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A method is described for determining electronic polarizabilities of ions in doubly refracting ionic crystals 
solely from crystal data. An expression for computing polarizabilities by a least-squares fit can be derived. 
Such a method is used to obtain values for the polarizability of cations for the sodium D line in A3: Na ÷ 1.7, 
K + 11.6, Rb + 19.1, TI + 48.7, Ca 2+ 5.2, Sr 2+ 11.1, Ba 2÷ 23.2, Pb 2÷ 38.3. Evidence is given of decreasing 
polarizability of the 02- ion in aragonite-type carbonates with decreasing cation sizes. 

Introduction 

Tessman, Kahn & Shockley (1953) (TK & S) reported 
a method for evaluating electronic polarizability values 
of ions in ionic crystals from both optical and structural 
data. By applying their method to a great number of 
crystals, they obtained a list of polarizability values of 
ions. TK & S polarizability values differ considerably 
from polarizability values that have been otherwise 
determined (Pauling, 1927; Born & Heisenberg, 1924; 
Mayer & Goeppert-Mayer, 1933; Fajans & Joos, 
1924; Langhoff, 1965; Cohen, 1965, 1966; Lahiri & 
Mukherji, 1967). The cation polarizabilities are 
generally higher, and the anion polarizabilities lower, 
than those obtained by other methods for gaseous ions. 
Efforts have been made to account for these differences 
(Ruffa, 1963; Jain, Shanker & Khandelwal, 1975), as 
well as to develop the TK & S method so as to reduce 
the discrepancies (Pirenne & Kartheuser, 1964). As 
pointed out by Batsanov (1966), the main deficiency of 
the TK & S method stems from neglect of the fact that 
small cations tend to reduce the polarizability of the 
anions. The phenomenon of interacting individual ions, 
as suggested by Pirenne & Kartheuser (1964), is not 
sufficiently explained though it improves the corre- 
spondence between the polarizabilities of ions in ionic 
crystals and the polarizabilities of gaseous ions. 

Since TK & S and Pirenne & Kartheuser (1964) 
restricted themselves to isotropic crystals, they could 

only determine the sum of the polarizabilities from the 
refractive index. They lacked the additional data 
required to evaluate the individual polarizabilities. The 
difficulty of having more adjustable parameters than 
experimental measurements may be handled, at least in 
principle, by extending the TK & S method to doubly 
refracting crystals. The optical properties of a diatomic 
crystal, for example, can be described sufficiently by 
two polarizabilities while there are one, two or three 
indices of refraction measured, depending on sym- 
metry. It has been suggested (Batsanov, 1966) that the 
use of salts with complex oxygen-containing anions 
could be advantageous in determining cation polariz- 
abilities, since the polarizabilities of the complex anions 
alter but little with the cation sizes. With these 
arguments in mind, I decided to examine some sulfates 
and carbonates to obtain values for electronic polariz- 
abilities of ions in doubly refracting crystals. In this 
paper a method is presented for determining the 
polarizabilities of ions in ionic crystals. The resulting 
polarizabilities do not depend as they do in the work of 
TK & S and of Pirenne & Kartheuser (1964) on an 
arbitrary selection of the electronic polarizability of one 
of the ions. Moreover, we shall see that the trend of 
decreasing polarizability of the anions with decreasing 
sizes of the cations is confirmed. The calculations 
remove the discrepancies between the electronic 
polarizabilities of ions in crystals and the values for 
gaseous ions. 
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Fitting expression 

In an anisotropic crystal the connection between 
crystal structure, electronic polarizabilities of the ions, 
and refractive indices is established by evaluating 
dipole lattice sums. General principles of the Ewald 
method for evaluating multipole lattice sums have been 
reviewed recently by Cummins, Dunmur, Munn & 
Newham (1976). According to these authors one may 
write [equation (10) of the reference] 

F(k) = E + Y. L(kk')p(k')/eoV. (1) 
k' 

The integers k, k' denote the sublattice or the site in the 
unit cell, and the summation is over all sites within the 
unit cell occupied by polarizable ions. F(k) is the local 
electric field at site k, p(k') is the electronic dipole 
moment at site k', and L(kk') is the so-called Lorentz- 
factor tensor. The remaining quantities of equation (1) 
are the macroscopic electric field E, the unit cell volume 
v, and the permittivity of a vacuum %. 

Substitution of each of the ions by a point dipole 
located at the atomic centre, following Bragg (1924), 
defines the isotropic electronic polarizability rt(k') by 

p(k') = e 0 a(k') F(k'). (2) 

From the above equations it follows that 

F(k) = E + (l /v)  Y k(kk')a(k')F(k'). (3) 
k '  

The Lorentz-factor tensor L(kk') may be evaluated 
from the crystal structure by means of the formulae of 
Cummins~ Dunmur, Munn & Newham (1976) or, as I 
did, by the plane-wise summation method due to De 
Wette & Schacher (1965). If the electronic polariz- 
abilities ~t(k') are known or at least can be estimated, 
then (3) becomes a solvable system of linear equations 
in the components of the F(k). 

The electric dipole moment per unit volume due to all 
dipoles is given by summing equation (2) over k' and 
dividing by v, 

P = ( 1 / v )  Z P(k ' )=(eo]v)  E ,~(k')F(k'). (4) 
k'  k '  

By means of the dielectric susceptibility tensor X the 
electronic polarization can be written as 

P = 80•E. (5) 

The components of the dielectric susceptibility tensor 
are related to those of the dielectric constant tensor by 

K u = x u  + 6 U. (6) 

Since the dielectric constant tensor is associated with 
the squares of the refractive indices, comparison 
between theoretical and observed values becomes 
possible. 

Once a set of polarizabilities a t, a 2 . . . . .  a, for the 
different ions in a crystal is given, the electric fields F(k) 

can be determined by solving equations (3). Using 
equations (4), (5) and (6), we get the components of the 
dielectric constant tensor as functions of the electronic 
polarizabilities 

Ktj --- Kij ( ,~ , . . . ,  (tn). (7) 
Now the sum 

3 

Z (K. ( .~ , . . . , . . ) -  r~s)  2 (8) 
1=1 

can be minimized. The K~ bs denote the diagonal terms 
of the dielectric constant tensor, which are known by 
experiment. Minimizing (8) can give values for the 
electronic polarizabilities al, ..., % provided their 
number n does not exceed that of the refractive indices, 
that is, two for a uniaxial crystal and three for a biaxial 
crystal. 

If there are different crystals with certain ions in 
common which are believed to be of equal polariz- 
ability, the summation in expression (8) can be 
extended over this group of crystals. This procedure 
gives better results, since the number of adjustable 
parameters in comparison with the experimentally 
known values becomes more favorable. 

Under isotropic symmetry the Lorentz-factor tensor 
is diagonal with elements equal to one third, and the 
local electric field is constant. Thus equation (3) may be 
written as 

1 
F = E + - -  F ~, a(k'). (9) 

3v k' 
This is the standard result of Lorentz for the local field 
in a polarized continuum. The result does not depend 
on the polarizability of the individual ions, but is deter- 
mined solely by the sum 

1 
~m = ~ Z ~(k'), (10) 

k'  

where Z is the number of chemical formulae per unit 
cell, as usual. Equation (10) states that the electronic 
polarizability of an isotropic crystal is simply the sum 
of the electronic polarizabilities of the individual ions. It 
was therefore called assumption of  simple additivity 
(TK & S) or interacting formula (Pirenne & 
Kartheuser, 1964). The molecular electronic polariz- 
ability a m is then related to the refractive index by the 
familiar Lorenz-Lorentz formula 

30 n 2 -  1 
( I I )  

am'-" Z n 2 + 2  ' 

which is used in the work of TK & S and Pirenne & 
Kartheuser (1964). 

Numerical results and discussion 

(i) Details of  the numerical calculation 

I have written a computer program (Fortran IV) 
which evaluates dipole lattice sums and the dielectric 
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constant tensor. The input of data is easily managed. 
For the components of the dielectric constant tensor, 
accuracy within 1 part in l0 s is obtained. To achieve 
this high degree of accuracy a great number of terms 
must be included when computing the dipole lattice 
sums. For the plane-wise summation method of De 
Wette & Schacher (1965) the rate of convergence of 
the sums is governed by the length of the vector joining 
two atoms within a unit cell and, more specifically, by 
the component in the direction of the basic reciprocal 
lattice vector e* [see for example equation (24) of De 
Wette & Schacher]. If this component is low, so is the 
rate of convergence. Moreover, as pointed out by 
Cummins, Dunmur, Munn & Newham (1976), some 
care is necessary in applying the usual test of 
convergence. This test is that a fixed number of contri- 
bution's to each sum should fall below a pre-set value. 
To make quite sure that the intended accuracy of the 
dielectric constant tensor is achieved, the number of 
terms in the lattice sums is determined as a function of 
the above vector component. This procedure is adapted 
to unfavorable cases, since it normally overestimates 
the number of necessary terms. The speed of the 
computations is therefore greatly reduced, and the 
method is practically limited to structures containing 
less than about 50 ions per unit cell. 

In addition to the program that evaluates lattice 
sums, I have written another program (Fortran IV) 
which uses the lattice sums as data and determines 
electronic polarizabilities by minimizing expression (8). 
The results of these calculations involve errors because 
the minimum of expression (8) is usually not very 
distinct. Thus, by the least-squares fit the parameters 
can be determined only to a low degree of accuracy. 

In addition to the errors arising in connection with 
the least-squares fit, another source of error may 
originate because of inexact optical or structural data. 
An especial sensitivity is found if inaccuracies of very 
short distances between ions of high values of polariz- 
ability are involved. 

ite have been used repeatedly since the paper of Bragg 
in 1924. I, therefore, also began with these structures, 
since both display strong double refraction, far away 
from the isotropic case where the optics depends solely 
on the sum of the electronic polarizabilities. But as 
work went on, it appeared that calcite-type structures 
are beyond the range over which the Bragg model of 
point dipoles is valid. I was therefore forced to restrict 
the calculations to aragonite-type carbonates. The 
problem of applying the Bragg model to calcite-type 
structures is discussed in detail by Pohl & Rath (1978). 

The carbonates were assumed to consist of Me 2+ 
ions (Me = Ca, Sr, Ba, Pb) and 0 2- ions; the carbon 
ion C 4+ was omitted because of its negligible polariz- 
ability. Refractive indices are obtained from the com- 
pilation by Winchell & Winchell (1964). On the basis of 
recent structural data (references in Table 1) electronic 
polarizability values were computed for 2 = 5893 A 
(sodium D line) by minimizing expression (8). The 
results are given in Table 1. 

For each of the aragonite-type carbonates, a 
polarizability value is determined for both the Me 2÷ ion 
and the O z- ion. No other data apart from structural 
and optical constants are used in the computation. A 
trend of decreasing polarizability of the 0 2- ion with 
decreasing size of the cation is indicated. 

Oil) Sulfates 

For cations, the polarizability is thought to be almost 
independent of crystal structure or neighboring anions. 
To test this statement as well as to confirm the values of 
the polarizabilities obtained from the aragonite-type 
carbonates, the computations were extended to sulfates. 
All sulfates containing just one type of cation are 
included, provided that both optical data and a recent 
structure determination (references in Table 2) are 
available. As was the case with the carbonates, the 
refraction data are obtained from Winchell & Winchell 

(ii) Carbonates 

In order to investigate the relation between atomic 
arrangement and double refraction, calcite and aragon- 

Table 1. Aragonite-type carbonates: electronic polar- 
izabilities of  ions 

acatlon ao2- 
Cation (A 3) (A 3) Structure 

Ca 2+ 5.2 18.0 a, b 
Sr z+ 12.1 17.8 a 
Ba 2+ 23.6 18.5 a 
Pb z+ 38.2 19.8 e 

References: (a) Villiers (1971). (b) Dal Negro & Ungaretti 
(1971). (c) Sahl (1974). 

Table 2. Sulfates: electronic polarizabilities of  ions 

Creation 
Oeatlon 002- (at %2- = 17.5) 

Cation (A 3) (A 3) (A 3) Structure 

Na ÷ -0.8 18.6 1.7 a 
K + 12.8 16.9 11.6 b 
Rb + 15.8 18.9 19.1 c 
T1 + 41.2 21.7 48.7 d 
Ca 2+ 6.5 17.1 5.1 e 
Sr z+ 12.2 17.0 10.2 f 
Ba 2+ 17.5 18.7 22.8 g 
Pb 2+ no distinct 38.4 h 

minimum 
References: (a) Nord (1973). (b) McGinnety (1972). (c) Nord 

(1974). (d) Pannetier & Gaultier (1966). (e) Cheng & Zussman 
(1963). (f) Hawthorne & Ferguson (1975). (g) ColviUe & 
Staudhammer (1967). (h) Sahl (1963). 
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Cation 

Table 3. Electronie polarizabilities o f  cations (in A 3) 

Theoretical Mayer & Fajans & Present 
work Pauling Goeppert-Mayer Joos TK & S paper 

Na + [2. I a 
[l.8b. c 2.3 2.1 2.5 5.2 1.7 

K + 14.M 10-6 10.1 11.1 16.7 11.6 
Rb + 17.8 18.8 a 19.6 24.9 19.1 
TI÷ 65.3 48.7 
Ca 2÷ 8.2 ~ 5.9 6.8 6.4 13.8 5.2 
Sr 2÷ 10.9 12.6 10.8 20.1 11.1 
Ba 2+ 19.6 26.1 a 21.1 31.4 23.2 
pb2+ 61.6 38.3 

References: (a) Langhoff (1965). (b) Cohen (1966). (c) Lahiri & Mukherji (1967). (d) Born & Heisenberg (1924). 

(1964). As the polarizability of the sulfur ion S 6+ is 
negligible, the sulfates were assumed to consist of 0 2- 
ions and Me + ions (Me + = Na +, K +, Rb +, TI ÷) or Me 2÷ 
ions (Me 2+ = Ca 2+, Sr 2+, Ba 2+, pb2+). For each 
compound, polarizabilities were computed for 2 = D by 
minimizing expression. (8). The results are given in 
Table 2, columns 2 and 3. 

The most striking features of the calculations are a 
negative value of the polarizability of the Na ÷ ion and 
the failure to determine a polarizability for the Pb 2+. 
The negative polarizability value gives an estimate of 
the error connected with the present method of 
computing polarizabilities; the breakdown of the 
method in case of PbSO 4 reflects the fact that the 
sulfates are nearly isotropic. Therefore expression (8) 
has only a weak minimum, as expected from equation 
(10), which claims that in the isotropic case, there is no 
distinct minimum at all. 

Since it fails completely for PbSO 4 and gives too low 
a value of the polarizability for Ba 2+ (compared with 
the value determined from the carbonate, BaCOa, 
witherite), the method appears to be invalid for sulfates 
with heavy cations. However, no trend was observed in 
the polarizability of the 0 2- ion for the sulfates with the 
light cations Na +, K +, and Ca 2+. In these circum- 
stances, it seemed promising to extend the summation 
in expression (8) over the three sulfates of Na, K, and 
Ca. The extended expression (8) was then minimized, 
and a value of 17.5 A 3 was computed for the polariz- 
ability of the 0 2- ion in sulfates. Keeping this value 
fixed, another set of polarizabilities of cations in 
sulfates was determined. The results are given in Table 
2, column 4. 

For the modified calculation the polarizability of 
Na + becomes positive and the values of the Ca 2+, Sr 2+, 
Ba 2+ and Pb 2÷ ion differ but little from those deter- 
mined from aragonite-type carbonates. By and large, 
the assumption that the sulfates, at least those in Table 
2, contain 0 2- ions of the same polarizability through- 
out seems to be justified by improved results. However, 
highly accurate results cannot be obtained because the 
sulfates are nearly isotropic. 

(iv) Comparison with other investigations 

A final list of electronic polarizabilities of cations is 
set up by averaging over the values which are deter- 
mined for Ca 2+, Sr 2+, Ba 2+ and Pb 2+ from carbonates 
and s~fates, and by taking the values of Na +, K +, Rb +, 
and TI + from the sulfates. Table 3 lists some polariz- 
abilities calculated by theoretical methods together with 
polarizabilities determined by Pauling (1927), Mayer & 
Goeppert-Mayer (1933), Fajans & Joos (1924), TK & 
S, and the present method. Whereas the theoretical 
work, as well as the work of Pauling and Mayer & 
Goeppert-Mayer, refers to the static case (2 = oo), the 
determinations of Fajans & Joos, TK & S and this 
work are for 2 = D. 

I thank the Deutsche Forschungsgemeinschaft for 
financial support and the Rechenzentrum der Univer- 
sit,it Hamburg and the DESY-Rechenzentrum, Ham- 
burg for computer time. 
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The conjugate gradient method allows the solution of least-squares equations A(u -- u o) = B without 
evaluating A -~. Storage limitations can thus be satisfied by approximating A by a sparse matrix which 
need not be block-diagonalized. Optimization of the method allows a satisfactory solution within 10-12 
iteration steps for any sized matrix, enabling an economic use of conditional slack constraints. 

Introduction 

The least-squares refinement of  a crystal structure uses 
residuals Ah which are not linear in variables {u} and 
iteration is required for the minimization of Y h WhAt. 
Modified equations can enable a more economic 
refinement strategy. The larger the problem, the more 
uneconomic it is to use a full-matrix solution involving 
all refinable parameters. If sparse-matrix approxima- 
tions are considered, the advantage of a conjugate 
gradient solution for the least-squares equations 
A(u -- u 0) = B becomes obvious. The traditional 
method of solution involves the evaluation of A -~ so 
that u - u 0 = A- lB .  However, only in the special 
case of block-diagonalization is A -1 confined to the 
same storage area as A. The conjugate gradient 
solution says u - u0 = ~-olaiPi  where successive 
approximations ~m= 0 aiPi, m = 0 to N - 1, are made 
by an iterative procedure involving multiplication by 
the matrix A. The variance-covariance matrix for the 
variables {u} requires the evaluation of A -~ but this is 
only of any consequence in the final refinement cycle. 
A simple strategy successfully employed by Konnert 
(1976) for large structures is to use a sparse matrix 
where the only off-diagonal elements are between 
parameters for nearest and second-nearest-neighbour 
atoms. For such an approximation A -~ requires a 
much larger storage area than does A. Slack con- 

straints on interatomic distances were used to aid 
refinement by the conjugate gradient method. 

The conjugate gradient method can be monitored 
to estimate the actual improvement in Xh WhA~ for 
each iterative approximation to u -- uo. Each successive 
approximation further reduces Y h WhA~ and a simple 
modification to the standard method can be found so 
that fewer iterations can be used to obtain a satis- 
factory approximate solution. This modification is the 
subject of this paper. It is found that as few as 10 
iterations are sufficient to obtain 0-9999 of the 
maximum improvement. The rapidity of such an 
approximation means that conditional slack constraints 
can be used to aid refinement with very little cost 
in time. Restrictions can be imposed on the ranges 
of refinable parameters in three ways. 

(a) Strict constraints 

Strict constraints can be envisaged as replacing 
variables {u} by variables {v} where duj = ~i Cjidvi 
so that 

8Ah _ Ve h cj,. 
~gvi ~ ~guj 

Only a subset of the variables {v} is refined, the 
remainder being given fixed values. 


